For sequence generation, both autoregressive models and non-autoregressive models have been developed in recent years. Autoregressive models can achieve high generation quality, but the sequential decoding scheme causes slow decoding speed. Non-autoregressive models accelerate the inference speed with parallel decoding, while their generation quality still needs to be improved due to the difficulty of modeling multi-modalities in data. To address the multi-modality issue, we propose Diff-Glat, a non-autoregressive model featured with a modality diffusion process and residual glancing training. The modality diffusion process decomposes the modalities and reduces the modalities to learn for each transition. And the residual glancing sampling further smooths the modality learning procedures. Experiments demonstrate that, without using knowledge distillation data, Diff-Glat can achieve superior performance in both decoding efficiency and accuracy compared with the autoregressive Transformer.
translated by 谷歌翻译
Current practice in interpretable machine learning often focuses on explaining the final model trained from data, e.g., by using the Shapley additive explanations (SHAP) method. The recently developed Shapley variable importance cloud (ShapleyVIC) extends the current practice to a group of "nearly optimal models" to provide comprehensive and robust variable importance assessments, with estimated uncertainty intervals for a more complete understanding of variable contributions to predictions. ShapleyVIC was initially developed for applications with traditional regression models, and the benefits of ShapleyVIC inference have been demonstrated in real-life prediction tasks using the logistic regression model. However, as a model-agnostic approach, ShapleyVIC application is not limited to such scenarios. In this work, we extend ShapleyVIC implementation for machine learning models to enable wider applications, and propose it as a useful complement to the current SHAP analysis to enable more trustworthy applications of these black-box models.
translated by 谷歌翻译
The role of mobile cameras increased dramatically over the past few years, leading to more and more research in automatic image quality enhancement and RAW photo processing. In this Mobile AI challenge, the target was to develop an efficient end-to-end AI-based image signal processing (ISP) pipeline replacing the standard mobile ISPs that can run on modern smartphone GPUs using TensorFlow Lite. The participants were provided with a large-scale Fujifilm UltraISP dataset consisting of thousands of paired photos captured with a normal mobile camera sensor and a professional 102MP medium-format FujiFilm GFX100 camera. The runtime of the resulting models was evaluated on the Snapdragon's 8 Gen 1 GPU that provides excellent acceleration results for the majority of common deep learning ops. The proposed solutions are compatible with all recent mobile GPUs, being able to process Full HD photos in less than 20-50 milliseconds while achieving high fidelity results. A detailed description of all models developed in this challenge is provided in this paper.
translated by 谷歌翻译
通过最小化kullback-leibler(kl)差异,变化推断近似于非差异分布。尽管这种差异对于计算有效,并且已在应用中广泛使用,但它具有一些不合理的属性。例如,它不是一个适当的度量标准,即,它是非对称的,也不保留三角形不等式。另一方面,最近的最佳运输距离显示出比KL差异的一些优势。在这些优势的帮助下,我们通过最大程度地减少切片的瓦斯汀距离,这是一种由最佳运输产生的有效度量,提出了一种新的变异推理方法。仅通过运行MCMC而不能解决任何优化问题,就可以简单地近似切片的Wasserstein距离。我们的近似值也不需要变异分布的易于处理密度函数,因此诸如神经网络之类的发电机可以摊销近似家庭。此外,我们提供了方法的理论特性分析。说明了关于合成和真实数据的实验,以显示提出的方法的性能。
translated by 谷歌翻译
在分支机构和结合中得出良好的可变选择策略对于现代混合编程(MIP)求解器的效率至关重要。通过在先前的解决方案过程中收集的MIP分支数据,学习分支方法最近变得比启发式方法更好。由于分支机构自然是一项顺序决策任务,因此应该学会优化整个MIP求解过程的实用性,而不是在每个步骤上都是近视。在这项工作中,我们将学习作为离线增强学习(RL)问题进行分支,并提出了一种长期视线的混合搜索方案来构建离线MIP数据集,该数据集对分支决策的长期实用程序。在政策培训阶段,我们部署了基于排名的奖励分配计划,以将有希望的样本与长期或短期视图区分开,并通过离线政策学习训练名为分支排名的分支模型。合成MIP基准和现实世界任务的实验表明,与广泛使用的启发式方法和基于先进的学习分支模型相比,分支rankink更有效,更健壮,并且可以更好地概括为MIP实例的大型MIP实例。
translated by 谷歌翻译
我们研究了类新型小说类发现的新任务(class-incd),该任务是指在未标记的数据集中发现新型类别的问题,该问题通过利用已在包含脱节的标签数据集上训练的预训练的模型,该模型已受过培训但是相关类别。除了发现新颖的课程外,我们还旨在维护模型识别先前看到的基本类别的能力。受到基于彩排的增量学习方法的启发,在本文中,我们提出了一种新颖的方法,以防止通过共同利用基类功能原型和特征级知识蒸馏来忘记对基础类的过去信息。我们还提出了一种自我训练的聚类策略,该策略同时将新颖的类别簇簇,并为基础和新颖类培训共同分类器。这使得我们的方法能够在课堂内设置中运行。我们的实验以三个共同的基准进行,表明我们的方法显着优于最先进的方法。代码可从https://github.com/oatmealliu/class-incd获得
translated by 谷歌翻译
目的:Shapley添加说明(SHAP)是一种流行的事后技术,用于解释黑匣子模型。尽管已经对数据不平衡对预测模型的影响进行了广泛的研究,但在基于Shap的模型解释方面,它在很大程度上仍然未知。这项研究试图研究数据不平衡对深度学习模型的Shap解释的影响,并提出一种减轻这些影响的策略。材料和方法:我们建议在解释黑匣子模型时在背景中调整类别的类别,并在形状中进行解释数据。我们的数据平衡策略是构成背景数据和解释数据,同等分布。为了评估数据调整对模型解释的影响,我们建议将Beeswarm图用作定性工具,以识别“异常”解释伪像,并定量测试可变重要性和预测能力之间的一致性。我们在一项实证研究中证明了我们提出的方法,该研究使用医学信息MART(MIMIC-III)数据预测住院死亡率和多层概念。结果:使用数据平衡策略将使我们能够减少蜜蜂图图中的工件数量,从而减轻数据不平衡的负面影响。此外,通过平衡策略,来自相应重要性排名的顶级变量表明歧视能力得到了改善。讨论和结论:我们的发现表明,平衡的背景和解释数据可以帮助减少偏斜的数据分布引起的解释结果中的噪声,并提高可变重要性排名的可靠性。此外,这些平衡程序提高了在临床应用中识别出异常特征的患者方面的可能性。
translated by 谷歌翻译
Learning on Graphs (LoG) is widely used in multi-client systems when each client has insufficient local data, and multiple clients have to share their raw data to learn a model of good quality. One scenario is to recommend items to clients with limited historical data and sharing similar preferences with other clients in a social network. On the other hand, due to the increasing demands for the protection of clients' data privacy, Federated Learning (FL) has been widely adopted: FL requires models to be trained in a multi-client system and restricts sharing of raw data among clients. The underlying potential data-sharing conflict between LoG and FL is under-explored and how to benefit from both sides is a promising problem. In this work, we first formulate the Graph Federated Learning (GFL) problem that unifies LoG and FL in multi-client systems and then propose sharing hidden representation instead of the raw data of neighbors to protect data privacy as a solution. To overcome the biased gradient problem in GFL, we provide a gradient estimation method and its convergence analysis under the non-convex objective. In experiments, we evaluate our method in classification tasks on graphs. Our experiment shows a good match between our theory and the practice.
translated by 谷歌翻译
Multimodal machine translation (MMT) aims to improve translation quality by incorporating information from other modalities, such as vision. Previous MMT systems mainly focus on better access and use of visual information and tend to validate their methods on image-related datasets. These studies face two challenges. First, they can only utilize triple data (bilingual texts with images), which is scarce; second, current benchmarks are relatively restricted and do not correspond to realistic scenarios. Therefore, this paper correspondingly establishes new methods and new datasets for MMT. First, we propose a framework 2/3-Triplet with two new approaches to enhance MMT by utilizing large-scale non-triple data: monolingual image-text data and parallel text-only data. Second, we construct an English-Chinese {e}-commercial {m}ulti{m}odal {t}ranslation dataset (including training and testing), named EMMT, where its test set is carefully selected as some words are ambiguous and shall be translated mistakenly without the help of images. Experiments show that our method is more suitable for real-world scenarios and can significantly improve translation performance by using more non-triple data. In addition, our model also rivals various SOTA models in conventional multimodal translation benchmarks.
translated by 谷歌翻译
Is it possible to leverage large scale raw and raw parallel corpora to build a general learned metric? Existing learned metrics have gaps to human judgements, are model-dependent or are limited to the domains or tasks where human ratings are available. In this paper, we propose SEScore2, a model-based metric pretrained over million-scale synthetic dataset constructed by our novel retrieval augmented data synthesis pipeline. SEScore2 achieves high correlation to human judgements without any human rating supervisions. Importantly, our unsupervised SEScore2 can outperform supervised metrics, which are trained on the News human ratings, at the TED domain. We evaluate SEScore2 over four text generation tasks across three languages. SEScore2 outperforms all prior unsupervised evaluation metrics in machine translation, speech translation, data-to-text and dialogue generation, with average Kendall improvements 0.158. SEScore2 even outperforms SOTA supervised BLEURT at data-to-text, dialogue generation and overall correlation.
translated by 谷歌翻译